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Transcriptional mutagenesis by 8-oxodG in α-synuclein
aggregation and the pathogenesis of Parkinson’s
disease

Sambuddha Basu1, Goun Je2 and Yoon-Seong Kim1,2

Parkinson’s disease (PD) is an age-related progressive neurodegenerative disease associated with selective loss of dopaminergic

neurons. The characteristic hallmark of the disease is intracytoplasmic proteinacious inclusion bodies called Lewy bodies,

primarily consisting of a presynaptic protein α-synuclein. Oxidative stress-mediated damage to macromolecules have been shown

to occur frequently in PD. Oxidative damage to DNA in the form of oxidized guanine (8-oxodG) accumulates in both the

mitochondrial and nuclear DNA of dopaminergic neurons of the substantia nigra in PD. 8-oxodG-mediated transcriptional

mutagenesis has been shown to have the potential to alter phenotype of cells through production of mutant pool of proteins.

This review comprehensively summarizes the role of oxidative stress-mediated damage incurred during neurodegeneration, and

highlights the scope of transcriptional mutagenesis event in leading to α-synuclein aggregation as seen in PD.
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INTRODUCTION

Parkinson’s disease (PD) is an age-related progressive neuro-
degenerative disorder which is associated with selective loss of
dopaminergic neurons from the substantia nigra pars compacta
region of the midbrain.1 PD is broadly classified into a familial
form (resulting from genetic alterations like mutations or
multiplication in the SNCA gene encoding alpha-synuclein
(α-SYN), early-onset form) and the idiopathic form with
unknown etiology (late-onset form).2 The majority of idio-
pathic PD cases represent a late-onset sporadic form with
cytoplasmic α-SYN aggregates which are the major component
of Lewy bodies and Lewy neurites, the characteristic proteina-
cious cytoplasmic deposits that are pathological hallmark of the
disease.3 Increasing evidence suggest that oxidative stress is a
key contributor to the pathogenesis of PD, which causes
damage to nucleic acids (both DNA and RNA), proteins, lipids
and other cellular macromolecules whose functions are
indispensable for cell survival. The metabolism of dopamine
(DA) itself contributes to oxidative stress that renders the
nigral neurons particularly vulnerable in PD.4,5 The most
frequent DNA lesion generated by oxidative stress is
8-oxo-7,8-dihydroguanine (8-oxodG), the oxidized form of
guanine, often associated with neurodegenerative diseases

including PD and Alzheimer’s disease (AD).1,5 8-oxodG, being
a nonbulky DNA lesion, has high mutagenic potential by
misincorporation of an adenine instead of cytosine causing
G:C→T:A transversion mutation.6 8-oxodG has also been
implicated in an event called transcriptional mutagenesis (TM),
whereby a misincorporated adenine in the transcribing mRNA
leads to the generation of mutated species of protein7,8

(Figure 1). It is well documented that oxidative DNA damage
accumulates in ageing brains and this accumulation is
significantly increased in brains of patients with PD and AD
compared to their age-matched controls.5,9 These increased
levels of DNA damage are also corroborated by decrease in the
DNA repair capacity of specific enzymes such as 8-oxodG DNA
glycosylase1 (OGG1).10 In addition to its involvement in tumor
development, TM may have a very important role in the
neurodegenerative disorders, in which a nucleation-dependent
protein aggregation process has a pivotal role in neuronal
degeneration as seen in PD and AD.11 As shown in α-SYN
A53T mutant species that was reported in the familial form
of PD,12 the pathologically misfolded proteins drive the
template-directed misfolding of the native monomeric
proteins, which contributes to the nucleation-dependent
fibrillation process.13,14 Moreover, compared with replicating
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cells, neurons that are post-mitotic cells might be even more
vulnerable to 8-oxodG-mediated TM as pathogenic effects
caused by mutant species generated through TM events could
be accumulated over a lifetime.8 In the following review, we
discuss the importance of oxidative damage in PD and its scope
in the pathogenesis of the disease through 8-oxodG-mediated
TM events.

OXIDATIVE STRESS-MEDIATED DAMAGE IN

NEURODEGENERATION

Oxygen is an essential component to the survival of all living
beings. But the greatest paradox remains in the fact that
production of reactive oxygen species (ROS) as a by-product of
oxygen metabolism is highly toxic to cells. ROS are molecules
that can react with cellular macromolecules and impair their
functions. It can include both free radicals like superoxide,
hydroxyl radical and nitric oxide (containing highly reactive
unpaired electrons) and molecules like hydrogen peroxide and
peroxynitrite. Post-mortem brain tissues from patients of PD,
AD and amyotrophic lateral sclerosis (ALS) have clearly
demonstrated higher amount of ROS in the selective areas
that undergoes neurodegeneration.

Oxidative stress originates when the rate of ROS production
is significantly higher compared with its elimination from
the system. Several markers of the oxidized cellular macro-
molecules have been identified under conditions of neuro-
degeneration. For example, elevated levels of malondialdehyde
and 4-hydroxynonenal, which are markers of oxidized lipids,
have been observed in the cortex and hippocampus of patients
with AD, in the substantia nigra of patients with PD and spinal
fluid of patients with ALS.13–16 Oxidative modification of
unsaturated fatty acids can result in the generation of lipid
peroxides which can further cause oxidation of the unsaturated
fatty acids in a chain-like event, finally leading to the disruption
of plasma membranes and membranes of other cellular
organelles like mitochondria.17 The levels of protein carbonyls,
a marker of protein oxidation, have been also reported to be
consistently elevated in the hippocampus and neocortex of
individuals with AD, in Lewy bodies in case of PD and motor
neurons of ALS patients.18–21 Oxidation of proteins can disrupt
the active site of enzymes, lead to conformational change,
disrupt protein–protein interactions, and alter their binding
capacity to DNA, eventually threatening cell survival. In

addition, increased levels of oxidative damage to DNA and
RNA bases have been consistent with the neurodegenerative
conditions like PD, AD and ALS. Although all DNA bases
could be potentially oxidized, guanine is the most susceptible
base to oxidative damage. It gets readily oxidized to form
8-oxodG and serves as a marker for oxidative damage.22 In AD,
the level of nuclear DNA damage in the brain regions including
frontal, parietal and temporal lobes is significantly higher
compared with age-matched controls.23 Overall, it can be
concluded that oxidative stress is commonly associated
with neurodegenerative conditions and has a critical role in
mediating the disease processes.

The origin of oxidative stress and subsequent accumulation
of damage can not only be attributed to the overproduction of
ROS but also to the inefficient cellular defense and repair
machinery against oxidative stress.17,24 The defense machinery
refers to the antioxidant enzymes like superoxide dismutase,
glutathione peroxidase, glutathione reductase and catalase
among many others whose primary function is to scavenge
ROS generated in the cells. For example, superoxide dismutase
converts superoxide to hydrogen peroxide, which is sub-
sequently converted to water by either catalase or glutathione
peroxidase. Glutathione peroxidase detoxifies hydrogen
peroxide using reduced glutathione. During this process,
glutathione is oxidized and it can be subsequently reduced by
glutathione reductase.17 A number of reports have shown
reduced activity of the antioxidant machinery in AD.25,26

In familial ALS, mutations in copper- and zinc-containing
superoxide dismutase lead to a toxic gain of function,
rendering superoxide dismutase itself to a pro-oxidant protein
involved in ROS generation.27,28 PD is also characterized by
significant loss of the reducing agent glutathione in the
substantia nigra, which is one of the earliest known indicators
of nigral neuronal degeneration.29 Together, these evidences
comprehensively indicate that reduced antioxidant potential
might be a critical factor toward increased oxidative stress that
is associated with neurodegenerative disorders.

As discussed previously, accumulation of ROS-induced DNA
damage, like oxidation of bases and single strand breaks have
been implicated in the etiology of AD, PD, ALS and other
neurological disorders. This accumulation of the DNA damage
may imply the defect in the DNA repair machinery of the cells.
It has been shown that ROS-induced DNA damages are
primarily repaired via highly conserved base excision repair
pathway.30,31 Neuronal dysfunctions have been linked to
mutations or differential expression of base excision repair
enzymes like OGG1, XRCC1,32–34 single-strand break repair
enzymes like TDP1, aprataxin35,36 and double-strand break
repair enzymes like ATM and NBS1.37 Furthermore, it has
been shown that Ogg1 knockout mice exhibit age-associated
loss of nigrostriatal pathways and increased sensitivity to
the dopaminergic neuronal toxin, 1-methyl-4-phenyl-1,2,3,
6-tetrahydropyridine, than their wild-type littermates.38

Together, these evidences strongly suggest that oxidative
stress-mediated damage to cellular macromolecules including

Figure 1 8-OxodG-mediated transcriptional mutagenesis event. TM
event occurs when 8-oxodG present on the transcribing strand
(3′ → 5′) of a gene can misinsert an adenine instead of a cytosine
in the growing mRNA chain, thus introducing a mutation on the
nascent mRNA strand.
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DNA coupled with inefficient repair leads to progressive
neurodegeneration as seen in AD, PD, ALS and others.

OXIDATIVE DNA DAMAGE IN THE FORM OF 8-OXODG IN

PARKINSON’S DISEASE

Oxidative stress has been classically linked to the etiology
of PD. The high metabolic activity of neurons along with their
long life span makes them highly susceptible to oxidative
damage.39,40 Moreover, dopaminergic neurons in the
substantia nigra, the most affected brain region by PD, are
particularly vulnerable to oxidative stress. Although the exact
causes for this selective vulnerability is yet to be elucidated, DA
metabolism itself has been considered as a major culprit for
selective degeneration. DA has the capacity to auto-oxidize at
normal pH into toxic quinone species, producing superoxide
and hydrogen peroxide.41 Monoamine oxidase can also
enzymatically deaminate DA into nontoxic metabolite
3,4-dihydroxyphenylacetic acid and hydrogen peroxide.42

Hydrogen peroxide can in turn be broken down into hydroxyl
radical in a reaction catalyzed by iron. The level of iron is
reportedly higher in the nigral dopaminergic neurons as
compared with the other regions of the brain, owning to its
binding affinity to neuromelanin.14,43,44 Therefore, when it is
synthesized or transported into cells from extracellular space,
DA is rapidly stored into synaptic vesicles which provides a
stable environment for DA without monoamine oxidase and
low pH. Under conditions of PD, nigral neurons appear to be
in an exaggerated oxidative stress, causing severe damage to
cellular macromolecules.

Damage to nucleic acids is particularly very hazardous
amongst all the cellular macromolecules, because it can change
genetic information present in both nuclear and mitochondrial
genome.45 DNA damage by oxidative stress can result in the
production of either nonbulky DNA lesions like 8-oxodG that
can be repaired by the base excision repair pathway or bulky
DNA lesions which are generally repaired by the nucleotide
excision repair pathway.46 8-oxodG, the most frequent DNA
lesion caused by oxidative stress is often associated with
neurodegenerative diseases including PD.5 Immunocyto-
chemical analysis of 8-oxodG revealed a significant increase
of this DNA oxidation marker in the substantia nigra of
patients with PD although the extent of nuclear 8-oxodG
accumulation is not as high as mitochondrial 8-oxodG.4,5,47

Despite the presence of 8-oxodG-specific DNA repair enzyme,
OGG1, a significant percentage of this DNA lesion remains
unrepaired and accumulated under disease conditions.
Moreover, it is reported that the overall activity of OGG1 in
brain decreases over ageing in a mouse model.48 The 8-oxodG
generated by direct oxidation of DNA, can be base paired
with adenine as well as cytosine during replication, and
consequently lead to spontaneous G:C to T:A transversion
mutation.49 Thus, 8-oxodG remains the extensively studied
route for mutagenesis in proliferating cells. However, majority
of the cells in our body, including neurons, exist in non-
proliferating quiescent state. Neurons being post-mitotic cells,
face a major challenge of DNA repair during transcription.50

Failure to maintain both transcriptional and translational
fidelity is expected to result in functional impairment of the
cells. Studies have shown that many of these nonbulky lesions
present on the sense strand of DNA could be bypassed by RNA
polymerase during transcription, leading to misinsertion of
ribonucleotides to the growing mRNA strands, producing
mutant transcripts.51–53 This phenomenon is referred as TM
event in the cells. Since a significant increase of 8-oxodG was
observed in the substantia nigra of patients with PD,4,5,47 it is
highly possible that TM event might significantly contribute to
the pathogenesis of PD. In the next few sections of this review,
the perspective of TM in PD will be closely explored with the
emphasis on α-SYN that is reckoned a major pathogenic
molecule.

8-OXODG-MEDIATED TRANSCRIPTIONAL

MUTAGENESIS

DNA damage-mediated mutagenesis in a replication-based
model has provided a wide range of information for better
understanding of the origin of mutation and subsequently its
contribution to the pathogenesis of human diseases such as
cancers. However, as discussed briefly in the last section,
majority of cells under normal physiological conditions are
not frequently engaged in division and do not undergo
continuous cycles of replication.54 Most of the multicellular
organs of eukaryotes including brain or heart are mainly
comprised of nondividing or terminally differentiated cells.
Maintenance of complex physiological functions of these
organs primarily depends on securing the high fidelity of both
transcription and translation.7 Accumulation of TM-derived
mutant transcripts and subsequently generated erroneous
proteins has the potential to produce functional impairment
of nonproliferating cells and organs.11 As the aging process may
be accompanied by progressive deterioration of normal cellular
functions such as DNA repair machinery and antioxidation
processes, TM-mediated adverse effects on cells could be
exacerbated over aging. In fact, under in vitro conditions
allowing TM event, it has been shown that each round of
transcription keeps producing a mutant transcript as long as
8-oxodG lesion is not repaired. This event is expected to
generate a fairly large population of mutant transcripts which
will be translated multiple times, leading to a relatively large
amount of the mutant protein.7

A number of studies have shown that a plethora of DNA
damage can lead to a TM event.11 The structural analysis of
yeast RNA polymerase II at an 8-oxodG lesion revealed the
possible mechanism of TM. In this study, it has been shown
that 8-oxodG can mispair with adenine instead of cytosine
through a Hoogsteen base-paring with the 8-oxodG lesion at
the polymerase active center, thereby escaping the proofreading
of the polymerase and maintained in the nascent RNA stand.55

The potential of 8-oxodG to cause TM event had been
demonstrated in a bacterial system using Escherichia coli and
its role in developing antibiotic resistance.7 Later, using a
luciferase-based reporter system, TM-derived mutation event
has been also proved in mammalian cells, demonstrating that
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TM event is strongly affected by factors, such as promoter
strength of the gene, flanking sequence around the 8-oxodG
lesion and position of the lesion with reference to the
promoter.8 In the same study, OGG1 knockout cells showed
more frequent TM event compared with the cells lacking a
transcription-coupled repair machinery, suggesting that a
8-oxodG lesion is not efficiently recognized by transcriptional
machinery for initiating repair and rather OGG1 has a critical
role in preventing TM.8 Interestingly, TM event has been also
linked to activation of oncogenic pathway.56 Replacement
of a guanine with 8-oxodG at codon 61 of HRAS, a proto-
oncogene, led to generation of a constitutively active mutant
form of HRAS (Q61K) through TM event. Moreover, under
condition of Ogg1 null background in mouse embryonic
fibroblast, sufficient amount of the mutant protein was
generated to activate the downstream MAPK pathway, leading
to ERK phosphorylation.56

Together it suggests that 8-oxodG lesion is often bypassed
by RNA polymerase II without efficient detection by the
transcription-coupled repair or the base excision repair
machinery, generating transcription mutant species and con-
tributing to the pathogenesis of various diseases including
cancer, neurodegeneration or cardiovascular disease.

POTENTIAL OF TM EVENT TO CAUSE Α-SYN
AGGREGATION IN PARKINSON’S DISEASE

α-SYN is a 140 amino acid protein and natively unfolded. It
can exist as random-coil state as well as β-sheet conformation
upon aggregation or a α-helical conformation upon binding
to membranes. Sequence of α-SYN can be divided into three
regions with distinct characteristics (Figure 2): (1) the amphi-
pathic lysine-rich N-terminus (residues 1–60), which is mainly
involved in membrane interactions; (2) the middle hydropho-
bic region (non-Aβ component of amyloid plaques, residues
61–95), which is prone to β-sheet formation and fibrillization;

and (3) the C-terminus (residues 96–140), which is a highly
acidic and proline-rich region and primarily controls the
nuclear localization and interaction with other proteins.57

Multiplication as well as various single-nucleotide poly-
morphisms of SNCA have been reported in dominantly
inherited early-onset PD.12,58–61 α-SYN mutant species, A30P,
A53T and E46K have been shown to alter the aggregation
process and interfere with oligomerization, fibril formation
and the distribution in cellular compartments.12,62–68 More
recently, three additional mutations of α-SYN, H50Q, G51D
and A53E, have been identified in PD patients.63–65 Increasing
body of evidence from various experimental models has shown
that elevated levels of wild-type and various mutant species are
prone to accelerate the aggregation process. In misfolded state,
α-SYN is characterized by twisted, nonbranched filaments of
β-sheets.69 The mutant α-SYN proteins are transformed into
amyloid fibrillar species consisting of β-sheets, which have
properties to serve as templates to drive soluble proteins to
adopt similar structural changes, leading to the formation of
highly ordered aggregated structure.69–71 Increased oxidative
stress is a key contributor to the pathogenesis of PD and several
in vitro and in vivo experiments have linked oxidative stress to
α-SYN aggregation. Exposure of neuronal cells to various
oxidative stressors including ferrous ions, hydrogen peroxide,
MPP+ (1-methyl-4-phenylpyridinium), rotenone, nitric oxide
and superoxide all promoted the aggregation process.72–75

In vivo studies also corroborated the same idea that chronic
and systemic exposure of rodents to rotenone, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine or paraquat leads to selective
nigrostriatal dopaminergic lesions accompanying degeneration
with α-SYN aggregation.76–79

Thus, how the 8-oxodG-mediated TM event might have a
critical role in the process of α-SYN fibrillogenesis depends on
whether the mutant species generated by this process can
acquire a misfolded state by themselves, which will eventually
act as a seed in the nucleation-dependent aggregation process
as seen for reported mutant α-SYN proteins.80 If the 8-oxodG-
mediated TM mutant species are more stable in the β-sheet
form, then a limited amount of TM species could be enough to
promote prion-like nucleation of α-SYN.80,81 Over the past few
years, increasing number of studies have provided evidence that
α-SYN aggregates can propagate from one brain region to
another in a prion-like manner.82,83 This self-perpetuating
cycle of α-SYN fibrillation and propagation could be initiated
by the addition of a minute amount of pathogenic proteins that
can potentially serve as aggregate seeding. 8-oxodG-derived
TM species may trigger this process, leading to the
pathogenesis of PD.

In a paraquat-based animal model of PD, it has been shown
that nuclear 8-oxodG accumulation in the substantia nigra is
clearly correlated with increase in proteinase-K resistant species
of α-SYN aggregates.78 A recent study has pointed that genomic
distribution of 8-oxodG is not a random event, instead it is
localized preferentially to specific areas of the chromosome and
is negatively correlated with transcriptional activity of a gene.84

This fact implies that TM could affect various genes in the

Figure 2 Structure of full length α-SYN protein and its functional
components. N-terminal (1–60), non-Aβ component of amyloid
plaques domain (61–95) and C-terminal (96–140); point mutations
reported in familial PD (autosomal dominant form) are present in
the N-terminal (red arrows). N-terminal contributes to the α-helical
structure of α-SYN upon binding to lipid membranes. Non-Aβ
component of amyloid plaques domain contains most hydrophobic
residues and one phosphorylation site (blue rectangle, serine 87).
Non-Aβ component of amyloid plaques domain promotes
aggregation of the molecule by its propensity to form β-sheet
structure. C-terminal has three nitration sites (green circle, tyrosine
125, 133, 136) and one phosphorylation site (blue rectangle,
serine S129) and is mainly responsible for maintaining the protein
solubility.
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context of chromatin structure, and mutant species originating
from TM event should be outnumbered by the normal
physiological form. Therefore, for most proteins, generation
of small portion of nonfunctional TM species would not be
likely to cause entire functional impairment. However,
α-SYN could become cytotoxic in the nucleation-dependent
oligomerization process, in which small addition of mutant
α-SYN species to wild-type population may initiate the seeding
process and fibrillogenesis80,85. This unique biochemical
feature of α-SYN would strongly support the feasibility of the
proposed model.

All possible mutant α-SYN proteins which could be
generated through TM-mediated replacement of cytosine with
adenine in the mRNA strand are listed in Figure 3. Among
TM-generated α-SYN mutants, the following mutants, A30E,
H50N and A53E, have mutations at the same amino acid
position as the familial forms of mutants, A30P, H50Q and
both A53E and A53T, respectively. It would strongly suggest
that those TM mutants could similarly cause a nucleation-
dependent α-SYN fibrillation. Apart from these mutant forms,
there are several other residues that might disrupt the native
structure of the protein when they get mutated and make them
more prone to aggregation. To predict the aggregation
propensity of expected TM species, we used TANGO, a
statistical mechanics algorithm, which enables identifying
β-aggregating regions within a protein based on the sequence
information.86 TANGO algorithm indicated that a couple of
expected TM proteins has significantly higher β-aggregation
scores than wild-type α-SYN, which include L38I, S42Y, H50N
and Q62K in the N-terminal or the non-Aβ component of

Figure 3 All the possible mutant amino acid sequences of α-SYN
generated by 8-oxodG-driven TM. Upper line (wild type) represents
the reference amino acid sequence of the wild-type protein:
lower line (TM) shows amino acid changes can be caused by
8-oxodG- mediated transcriptional mutagenesis arising from
misincorporated adenine instead of cytosine in the mRNA sequence
during transcription (red); green letters designate reported a-SYN
mutants (A30P, E46K, H50Q, G51D, A53E & A53T) in familial
PD; and serine 87 and129 (blue) is the site of phosphorylation as
seen during aggregation of the molecule.

Figure 4 Predicted score for wild-type and some of the possible
mutant α-SYN species generated by TM event to form β-aggregate
by TANGO. β-aggregation score for wild-type and some of the
possible mutant α-SYN species which can be generated through TM
event as predicted by the structure analyzing algorithm TANGO (see
text for reference). Abbreviations: L38I, leucine to isoleucine;
S42Y, serine to tyrosine; H50N, histidine to asparagine; Q62K,
glutamine to lysine; WT, wild type.

Figure 5 Proposed model for aggregation of wild-type α-SYN protein by TM-generated mutant α-SYN species and propagation. Mutant
α-SYN generated through TM event may trigger a nucleation-dependent aggregation of the predominantly higher amount of wild-type
species and lead to propagation of α-SYN aggregation.
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amyloid plaques domain, predicting increases in aggregation
property (Figure 4). Post-translational modifications such as
phosphorylation on serine 87 and 129 may also affect the
α-SYN aggregation process.87,88 TM event can replace the serine
at 129 position with a tyrosine. Together we propose a
hypothetical model by which 8-oxodG lesions in the protein
coding region of SNCA could yield a small amount of TM
protein species with higher aggregation propensity that potentially
serve as a seeding for accelerating the aggregation of wild-type
α-SYN, leading to the self-propagation of aggregates and causing
degeneration of the nigrostriatal pathway in PD (Figure 5).

CONCLUSION

The majority of idiopathic PD cases are a late-onset sporadic
form with cytoplasmic α-SYN aggregates, which indicates that
increasing degree of aggregation does not depend only on
genetic mutations in SNCA. However, till date, the approaches
to understand the molecular mechanism of α-SYN aggregation
have focused primarily on the biochemical properties of
mutant protein species that were identified in rare familial
form of PD and their behavior within the cells. The proposed
model will give an insight into a novel mechanism called
‘transcriptional mutagenesis’ caused by the accumulation of
oxidatively damaged DNA lesions, 8-oxodG, in the SNCA gene.
Comprehensive investigation on age-dependent changes in
α-SYN mRNA profiles as well as identification of TM species
supported by functional studies on mutant proteins will
definitely add a new dimension to the understanding of
α-SYN pathology in conjunction with oxidative stress.
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